来源:化学研究所 |
发表时间:2018-07-27
点击:7968
低维有机晶态材料具有规整度高和结构缺陷少的特点,是揭示材料本征特性和构筑高性能光电器件的最佳选择之一, 近年来在有机半导体电子学和纳米光子学等方面取得重要应用。考虑有机分子的组装特点,通常使用具有较强分子间作用力的平面型有机分子来制备高规整度的低维晶体。相比较,钌、铱等过渡金属配合物虽然被广泛用于多种光电领域,但因其溶解性较差和分子结构非平面型的特点,相关低维晶态材料的可控制备鲜有报道。
在国家自然科学基金委和中国科学院先导项目支持下,中科院化学研究所光化学实验室姚建年 / 钟羽武研究团队近年来在光功能金属配合物的设计合成与光电性能方面开展了系统性工作( J. Am. Chem. Soc. 2015, 137, 4058; Angew. Chem. Int. Ed. 2015, 54, 9192; Coord. Chem. Rev. 2016, 312, 22; Sci. China Chem. 2017, 5, 583 )。在此基础上,他们近期选取两种结构和溶解度相似的金属铱、钌光功能配合物作为能量给、受体,制备了双组份均匀掺杂或异质结纳米棒晶体,实现高效三线态能量转移和微纳尺度下多级组装过程的原位观察( J. Am. Chem. Soc. 2018, 140, 4269-4278 )。
最近,科研人员通过溶液再沉淀法成功制备了甲基化苯基吡啶金属铱配合物的高质量一维管状微纳晶体,并进一步通过晶体掺杂,得到了两种不同铱配合物的二元能量转移晶体,实现聚集发光淬灭 (ACQ) 受体的光放大和微纳尺度温度响应功能。研究表明,当受体的掺杂量为 0.2% 时,此类晶体可以实现接近 80% 的三线态能量转移效率和 800 倍以上的受体磷光放大。在常温时,晶体表现出受体的红色磷光,固态量子产率达到 40% 。随着温度的降低,晶体的激子能量转移受到抑制,给体的绿色发光重新被激活,实现微纳尺度下发光颜色变化的原位调控与温敏监测。该工作表明了过渡金属配合物在低维晶体制备与光功能方面的独特应用,并为三线态激子能量转移的机制研究提供重要信息( Angew. Chem. Int. Ed. 2018, 57, 7820-7825 )。
"
图:基于金属配合物低维晶体的光放大与温度响应
[声明]本文来源于互联网转载,转载目的在于传递更多信息,并不代表本网赞同其观点和对其真实性、准确性等负责,尤其不对文中产品有关功能性、效果等提供担保。本站文章版权归原作者所有,内容为作者个人观点,本站提醒读者,文章仅供学习参考,不构成任何投资及应用建议,如需转载,请联系原作者。如涉及作品内容、版权和其它问题,请与我们联系,我们将在第一时间处理!本站拥有对此声明的最终解释权。