客户端

新材料在线APP下载

寻材问料下载

开通会员

精彩推荐

会员享研报折扣价、看项目BP、约投资人、每日在通讯录加更多好友等特权

开通会员 查看会员特权

登录/注册

热门媒体号

热门企业号

上硅所朱英杰团队AFM:多功能仿生结构气凝胶实现连续流动催化降解、水杀菌消毒、太阳能驱动高效水净化和海水淡化

来源:高分子科学前沿|

发表时间:2021-11-25

点击:4089

随着全球范围水污染问题日益严重,清洁淡水短缺已经成为全球性的紧迫难题之一。水中的污染物和细菌也会传播疾病,危害人体健康。因此,研发可持续的绿色高效处理方法将海水和被污染的水转变为清洁水已成为科研工作者的当务之急。


纳米催化剂具有高比表面积、高活性和优异的催化性能,广泛应用于多种化学反应以及有机污染物的催化降解。但是,纳米催化剂的应用也存在一些难题,例如,在催化反应结束后将催化剂纳米颗粒从反应液相体系中分离回收困难,耗时且成本高,并且反复循环使用易造成催化剂纳米颗粒团聚,使催化活性降低。另外,水中存在的细菌等微生物易粘附在纳米催化剂表面,造成生物污垢,导致其水处理能力和效率严重降低。


太阳能是一种清洁的可持续能源,对太阳能的高效利用是一个热点研究领域,也是发展清洁可持续能源的一个很有前途的发展方向。目前研究的一个热点是利用光热转换材料构建太阳能水蒸发器,以便实现太阳能驱动的水净化和海水淡化。但是,存在的难题是很多光热转换材料的能量损耗严重、水蒸发效率低以及盐沉积堵塞水输运通道等,这些问题大大降低了太阳能的利用效率和水净化效率。


具有独特结构和优异性能的天然植物为科研工作者研制先进的仿生功能材料提供了多重灵感。例如,树的水输运和蒸腾作用是一个自然过程,树可以通过自己发达的根系从土壤中吸收水分和营养物质,水分和营养物质从树的根部经过树干向树枝和树叶输送并且蒸发为水蒸汽散发到空气中,树干内的垂直有序排列的通道有助于水和营养物质的输运。树的水输运和蒸腾作用能够为整个树的各个部分提供充足的水分和营养物质,还可以降低树叶的温度以保护树叶不会因阳光照射温度过高而被灼伤。


气凝胶是一种具有优异性能的功能材料,具有超轻、高孔隙率和多孔网络结构。然而,大多数气凝胶具有不规则和无序的多孔结构,不利于通过毛细作用的快速水输运。具有仿生有序排列垂直孔道结构的气凝胶,具有吸附性能好、流动阻力低、水输送畅通快速等优势。因此,仿生有序排列垂直孔道结构气凝胶在构建高性能太阳能水蒸发器方面具有良好的应用前景。


最近,中国科学院上海硅酸盐研究所朱英杰研究员团队在天然树木的独特结构及水输运和蒸腾作用的启发下,通过冰模板诱导的自组装方法,研制出基于羟基磷灰石超长纳米线的多功能仿生有序排列垂直孔道结构气凝胶。在本研究中,羟基磷灰石超长纳米线作为载体负载并固定钯催化剂纳米颗粒,并与壳聚糖相互作用共同自组装构建有序排列垂直孔道结构的多功能仿生气凝胶。该多功能仿生气凝胶具有类似于树干内部有序平行排列的孔道结构,还具有连通的蜂窝结构、羟基磷灰石超长纳米线交织形成的网络孔壁和均匀分布的钯催化剂纳米颗粒。所制备的多功能仿生气凝胶可实现连续流动催化降解、水的杀菌消毒、太阳能驱动水净化和海水淡化。在仅由重力驱动的多种有机污染物水溶液连续流动催化降解过程中,该多功能仿生气凝胶表现出高的催化活性、高的水通量以及多次循环使用的高稳定性。在处理含大肠杆菌/金黄色葡萄球菌的污染水以及自然河流收集水样过程中,该多功能仿生气凝胶表现出高的去除效率和优异的抗生物粘附污染性能。结合其优异的光热转换性能、热量局域和有序排列垂直孔道结构,所制备的多功能仿生气凝胶在太阳光照射条件下表现出高的水蒸发效率、优异的太阳能驱动污水净化和海水淡化性能。此外,多功能仿生气凝胶还表现出优异的抗盐沉积性能,可以多次循环使用和长时间使用。另外,还采用多功能仿生气凝胶对东海附近的真实海水样品进行了太阳能驱动海水淡化测试,海水淡化后收集得到的纯净水中五种主要离子(Na+、Mg2+、K+、Ca2+和B3+)的浓度降至低于1 毫克/升,可满足世界卫生组织(WHO)和美国环境保护署(EPA)的饮用水标准。本研究工作表明所研制的多功能仿生气凝胶在催化反应、废水处理、海水淡化和环境工程等多个领域中具有良好的应用前景。



图1. 模仿树的结构和水输运与蒸腾行为,构建基于羟基磷灰石超长纳米线的有序排列垂直孔道结构多功能仿生气凝胶及其水净化示意图。(a) 具有有序排列垂直孔道结构的壳聚糖/羟基磷灰石超长纳米线/Pd纳米颗粒(CS/HAP@Pd)多功能仿生气凝胶的制备示意图。(b) 树的水输运与蒸腾行为。(c) CS/HAP@Pd多功能仿生气凝胶在重力驱动下连续流动催化中的应用和水杀菌消毒示意图。(d) CS/HAP@Pd多功能仿生气凝胶太阳能驱动水蒸发和水净化示意图。



图2. 羟基磷灰石超长纳米线固载钯催化剂纳米颗粒和有序排列垂直孔道结构的CS/HAP@Pd多功能仿生气凝胶的形貌和压力测试。(a, b) 负载Pd纳米颗粒的羟基磷灰石超长纳米线的透射电子显微(TEM)照片,(b)中插图显示了Pd纳米颗粒的粒径分布。(c) 负载Pd纳米颗粒的羟基磷灰石超长纳米线的Ca、P和Pd元素分布图。(d–g) CS/HAP@Pd多功能仿生气凝胶的表面(d–f)和垂直截面(g)扫描电子显微(SEM)照片。(h) CS/HAP@Pd多功能仿生气凝胶可根据应用需求制备成不同的形状和尺寸。(i) 使用200克的重物对CS/HAP@Pd多功能仿生气凝胶进行垂直和侧向压力试验,左下角的插图显示CS/HAP@Pd多功能仿生气凝胶在压力试验后完好无损。



图3. 具有不同壳聚糖/羟基磷灰石重量比的有序排列垂直孔道结构CS/HAP@Pd多功能仿生气凝胶和对照样品的红外吸收光谱图、氮气吸附-脱附等温线、压缩应力-应变曲线和水通量测试。(a) 傅立叶变换红外吸收光谱:(a1) 负载Pd纳米颗粒羟基磷灰石超长纳米线,(a2) CS/HAP@Pd多功能仿生气凝胶,(a3) 壳聚糖。(b) 氮气吸附-脱附等温线:(b1) HAP@Pd气凝胶,(b2) CS/HAP@Pd多功能仿生气凝胶(1:4),(b3) CS/HAP@Pd多功能仿生气凝胶(1:2),(b4) CS/HAP@Pd多功能仿生气凝胶(1:1),(b5) 壳聚糖。(c) 压缩应力-应变曲线:(c1) HAP@Pd气凝胶,(c2) CS/HAP@Pd多功能仿生气凝胶(1:4),(c3) CS/HAP@Pd多功能仿生气凝胶(1:2),(c4) CS/HAP@Pd多功能仿生气凝胶(1:1),(c5) 壳聚糖。(d) 不同气凝胶样品在重力下的水通量:(d1–d3) 具有有序排列垂直孔道结构的气凝胶样品:(d1) CS/HAP@Pd多功能仿生气凝胶(1:4),(d2) CS/HAP@Pd多功能仿生气凝胶(1:2),(d3) CS/HAP@Pd多功能仿生气凝胶(1:1),(d4) 无序孔道结构CS/HAP@Pd气凝胶(1:4)。



图4. 具有有序排列垂直孔道结构CS/HAP@Pd多功能仿生气凝胶在重力驱动下连续流动催化降解亚甲基蓝水溶液的性能。(a) 测试设备的照片。(b) 连续流动催化前后含亚甲基蓝和硼氢化钠水溶液的紫外-可见吸收光谱,插图显示连续流动催化降解前后溶液的照片。(c) 含亚甲基蓝和硼氢化钠水溶液以不同流动时间流经CS/HAP@Pd多功能仿生气凝胶后,亚甲基蓝在过滤水溶液中的残留浓度以及催化降解效率。(d) 不同浓度的含亚甲基蓝和硼氢化钠水溶液的连续流动催化效率。(e) 含亚甲基蓝和硼氢化钠水溶液流经不同Pd含量的CS/HAP@Pd多功能仿生气凝胶后的连续流动催化效率。(f) 在不同流速下含亚甲基蓝和硼氢化钠水溶液流经CS/HAP@Pd多功能仿生气凝胶后的连续流动催化效率和相应的水通量。(g) 使用不同的壳聚糖/羟基磷灰石重量比的有序排列垂直孔道结构CS/HAP@Pd多功能仿生气凝胶样品在不同流速下对亚甲基蓝水溶液的连续流动催化效率。(h) 在多次循环使用实验条件下,CS/HAP@Pd多功能仿生气凝胶对亚甲基蓝和硼氢化钠水溶液的连续流动催化效率。(i) CS/HAP@Pd多功能仿生气凝胶对亚甲基蓝和硼氢化钠水溶液在10小时连续流动催化过程中的催化效率及其处理的水溶液体积。



图5. 具有有序排列垂直孔道结构CS/HAP@Pd多功能仿生气凝胶在重力驱动下高效过滤去除细菌及其抗生物污染性能。(a) 与CS/HAP@Pd多功能仿生气凝胶处理前后的细菌(大肠杆菌和金黄色葡萄球菌)悬浮液一起培养后的固体营养琼脂平板的照片。(b) 大肠杆菌和金黄色葡萄球菌的去除效率。(c) 采用不同气凝胶样品处理的大肠杆菌和金黄色葡萄球菌悬浮液不同培养时间在600 nm处测得的光密度值。(d) 采用不同气凝胶样品与大肠杆菌和金黄色葡萄球菌悬浮液共培养3天后的SEM照片。(e) 采集水样的两条当地河流的照片,与CS/HAP@Pd多功能仿生气凝胶处理前后的水样一起培养的固体营养琼脂平板的照片。(f) 二个河水样品的细菌去除效率。



图6. 具有有序排列垂直孔道结构CS/HAP@Pd多功能仿生气凝胶在1 kW/m2光功率密度的模拟太阳光照条件下的水蒸发、水净化和真实海水淡化性能。(a) 基于CS/HAP@Pd多功能仿生气凝胶的太阳能驱动水蒸发示意图。(b) 在太阳光照20分钟后CS/HAP@Pd多功能仿生气凝胶和CS/HAP气凝胶的红外热图像。(c) 在各种实验条件下不同气凝胶样品,纯水重量随太阳光照射时间的变化。(d) 含有结晶紫、刚果红和硼氢化钠水溶液在CS/HAP@Pd多功能仿生气凝胶太阳能驱动水处理前后的紫外-可见吸收光谱和相应的照片。(e) 含有大肠杆菌或金黄色葡萄球菌水悬浮液在太阳能驱动净化前后的细菌浓度以及共培养的固体营养琼脂平板的照片。(f) 采用CS/HAP@Pd多功能仿生气凝胶太阳能驱动处理真实海水样品前后五种主要离子的浓度比较;海水淡化后收集得到的纯净水中五种主要离子(Na+、Mg2+、K+、Ca2+和B3+)的浓度降至低于1 mg L−1,可满足世界卫生组织(WHO)和美国环境保护署(EPA)的饮用水标准。


朱英杰研究员介绍


朱英杰,男,理学博士、研究员、博士研究生导师。1992年和1994年分别于中国科学技术大学获硕士学位和博士学位;1997年—2002年在国外从事科研工作,包括加拿大Western Ontario大学访问学者、德国Fritz-Haber马普研究所洪堡学者、美国Utah大学博士后、美国Delaware大学博士后。2002年入选中国科学院 “引进国外杰出人才”回国工作,并在2005年项目终期评估中获得优秀奖(比例小于20%);2006 年入选“科学中国人年度人物”;2007 年入选上海市“优秀学科带头人”;2008 年获中国科学院“朱李月华优秀教师奖”;2009 年获上海市自然科学奖一等奖(排名第二);2010 年获安徽省自然科学奖二等奖(排名第三);2014年获中科院上海硅酸盐研究所“所长特别奖”和“最快进步奖”;6次获中科院上海硅酸盐研究所 “优秀导师奖”。目前担任Molecules, Current Nanoscience, RecentPatents on Nanotechnology等7种国际学术期刊编委。


已发表SCI论文约380篇,包括Chemical Reviews, Chemical Society Reviews, AdvancedMaterials, Advanced Energy Materials, Journal of American Chemical Society, ACSNano, Advanced Functional Materials, Angewandte Chemie International Edition,Biomaterials, Chemical Engineering Journal, Journal of Materials Chemistry A,Small, Energy & Environmental Materials国际权威期刊等。发表的论文被引用约18000次,其中被引用超过100 次的论文有35 篇、被引用超过200 次的论文有10 篇、被引用超过300 次的论文有7 篇,单篇最高被引510次。2014年至2019年连续6年入选Elsevier 发布的“中国高被引学者榜”。发表的多篇论文入选“非常重要论文”、 “高引用论文”、“热点论文”、“封面论文”、 “ACS编辑们选择论文”、“阅读次数最多论文”。申请发明专利78项,获授权发明专利71项,其中1项美国专利获得授权。


主要研究方向为纳米生物材料。承担并完成了包括中国科学院“引进国外杰出人才”项目、国家自然科学基金、上海市科委基础研究重点项目、上海市纳米科技专项等多个科研项目。在国际上独创发明了新型无机耐火纸,使“纸能包住火”成为现实,在新型无机耐火纸的应用研究中取得一系列原创性研究成果,诸如骨缺损修复、耐高温电池隔膜、火 灾自动报警耐火墙纸、防火光(电)缆耐火纸包带、多模式防伪、防雾 霾口罩、海水淡化、水净化等20多个领域的应用研究均为国际首创,在国际上处于领先地位。研究工作受到国际和国内多个学术期刊和媒体的广泛关注和大量报道,例如Chemical & Engineering News, Materials Today,Nano Today, Chemistry Views, Decoded Science, American Ceramic Society,Chemical Engineering, International Daily News, “新加坡联合早报”、中央电视台CCTV–1、CCTV–4、CCTV–10、CCTV–13、CCTV–证劵资讯、“人民日报”、“光明日报”、“新华每日电讯”、“科技日报”、“中国科学报”、 “文汇报”、“解放日报”、“劳动报”、“China Daily”、“Shanghai Daily”、“香港文汇报”等。


已培养博士后2人、博士28人、硕士8人,另有多名研究生在读。培养的研究生荣获多项荣誉奖励,包括“中国科学院王宽诚博士后工作奖励基金”、“中国科学院院长优秀奖”、“研究生国家奖学金”、中国科学院“朱李月华优秀博士生奖”、“中国科学院优秀毕业生”、“上海市高等学校优秀毕业生”、“上海市研究生优秀成果奖”、“中国科学院-沙特基础工业公司奖学金”、“美国化学会上海分会研究生学术成就大赛奖”、“上海-联合利华研究生奖学金”、“宝钢优秀学生奖”、“严东生奖学金特等奖”等。


封面图来源图虫创意


新材料行业专家咨询服务

“本文由新材料在线®平台入驻媒体号高分子科学前沿提供,观点仅代表作者本人,不代表本网站及新材料在线®立场,本站不对文章内容真实性、准确性等负责,尤其不对文中产品有关功能性、效果等提供担保。本站提醒读者,文章仅供学习参考,不构成任何投资及应用建议。如需转载,请联系原作者。如涉及作品内容、版权和其它问题,请与我们联系,我们将在第一时间处理!本站拥有对此声明的最终解释权。”

点击咨询

客服

下载APP

公众号

让客服与您联系

留下您的联系方式,让客服为您提供专属服务

关闭