客户端

新材料在线APP下载

寻材问料下载

开通会员

登录/注册

热门媒体号

热门企业号

顶刊:性能超商用催化剂涂层膜!50000次测试循环后损失可忽略

来源:材料科学与工程微信公众号|

发表时间:2021-09-09

点击:1879

氢经济的增长是以电化学能源技术的进步为基础的,而水电解是技术组合中的一个关键组成部分。聚合物电解质膜水电解槽(PEMWE)阳极催化剂的开发主要集中在活性上,受反应物/中间体/产物吸附的组成和形态的影响。然而,当这些材料集成到PEMWE膜电极组件中时,该策略的效率被发现是有限的。不管催化剂的活性如何,电极的不均匀性、离聚体的集成以及氧化物-氧化物界面的高密度都会导致与较差的催化电极导电性相关的显著性能损失。


来自美国德雷克塞尔大学,劳伦斯伯克利国家实验室等单位的研究人员,开发了由纳米孔Ir和纳米片(npIrx-NS)组成的独特的催化剂形态,与商用IrO2纳米催化剂相比,npIrx-NS表现出对阳极析氧反应的高催化活性和优异的电极电子导电性,从而解决了这些局限性。npIrx-NS在PEMWE MEAs中的应用证明了其有效性,在负载低至0.06 mgIr cm−2时,其性能超过商用催化剂涂层膜,而在50000次加速应力测试循环后,其性能损失可以忽略不计。


论文链接:


https://doi.org/10.1002/aenm.202101438



图1.a,b)Ni95Ir5前驱体合金脱合金化形成的npIrx-NS的透射电子显微镜(TEM)照片。


图2.a)不同前驱体Ni(100−x)Irx合金在2M H2SO4+0.5M HCl中的阳极扫描电位去合金化电流密度。


图3.a)TKK IrO2(黑色)和npIrx-NS(红色)在0.1M HClO4中的RDE-OER极化曲线,催化剂负载量为28µgcm−2。


图4.npIrx-NS和TKK IrO2寿命初期的极化性能电压击穿(BOL)


图5.a)在0.06mgIrcm−2阳极负载下npIrx-NS(红色)和TKK IrO2(黑色)的极化曲线。用于比较的是循环法研究中的代表性极化曲线(灰色),该研究使用一种商用催化剂涂层膜(CCM)完成,并由一组参与研究人员在一系列设施中进行了测试。


图6.(顶部)BoL npIrx-NS在AST之前的TEM。(下)EOL NP-Irx-NS,AST后的TEMS;50000次AST循环,0.17mgIr cm−2阳极负荷。


综上所述,本文展示了一种由均匀Ni-Ir合金前驱体制备具有纳米孔Ir的纳米片(npIrx-NS)的新的自上而下电化学处理技术。平均孔径为5-10 nm,薄片厚度为60-100 nm,横向尺寸为1-2µm,使这些电极材料成为PEMWE酸性OER的理想电极材料。PEMWE极化曲线的电压击穿分析表明,npIrx-NS由于质量传输限制而造成的初始性能损失可以通过电位诱导纳米孔纳米片的重组、改善催化剂的可及性以及将质量传输过电位降低到与使用商用标准TKK IrO2催化剂的阳极相当的水平而得到缓解。在0.06mgIrcm−2的超低Ir阳极负荷下观察到了纳米多孔纳米片状形貌的真正优势,其中纳米多孔金属的横向连接性和互连金属主干的组合屈服显著地降低了HCD欧姆损耗。在PEMWE中,npIrx-NS在50000次AST循环上也表现出稳定的性能。由于npIrx-NS具有独特的导电内部金属结构平衡、高深宽比和稳定的形貌,是一种很有前途的下一代PEMWE材料。


封面图源自于图虫创意

新材料行业专家咨询服务

“本文由新材料在线®平台入驻媒体号材料科学与工程微信公众号提供,观点仅代表作者本人,不代表本网站及新材料在线®立场,本站不对文章内容真实性、准确性等负责,尤其不对文中产品有关功能性、效果等提供担保。本站提醒读者,文章仅供学习参考,不构成任何投资及应用建议。如需转载,请联系原作者。如涉及作品内容、版权和其它问题,请与我们联系,我们将在第一时间处理!本站拥有对此声明的最终解释权。”

点击咨询

客服

下载APP

公众号

让客服与您联系

留下您的联系方式,让客服为您提供专属服务

关闭